Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Yong Ren, Guang-Ao Yu and Sheng-Hua Liu*

Key Laboratory of Pesticides \& Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
chshliu@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.060$
$w R$ factor $=0.184$
Data-to-parameter ratio $=19.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(Di-tert-butylphosphino)cobaltocenium hexafluorophosphate

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{P}\right)\right] \mathrm{PF}_{6}$, the $\mathrm{P}-\mathrm{C}$ (cyclopentadienyl) bond distance $[1.840(4) \AA]$ is significantly shorter than $\mathrm{P}-\mathrm{C}($ tert-butyl) bond distances $[1.879$ (5) and 1.900 (5) \AA]. The $\mathrm{PF}_{6}{ }^{-}$anion links to the cobaltocenium cation via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonding.

Comment

Cobaltocene derivatives have been applied in cross-coupling areas (Christoper \& Thomas, 2000). As part of an investigation on new catalysts, we have focused our attention on cobaltocenium compounds. In this paper, we present the crystal structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The Co1C bond distances within the $\mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{C} 6-\mathrm{C} 10$ rings range from 2.005 (4) to 2.061 (4) \AA and from 2.007 (5) to 2.026 (4) \AA, respectively. The $\mathrm{Co} 1 \cdots \mathrm{Cg} 1$ and $\mathrm{Co} 1 \cdots \mathrm{Cg} 2$

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Received 19 September 2005 Accepted 22 November 2005 Online 26 November 2005

Figure 2
The packing of (I), showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds as dashed lines.
distances are 1.639 (2) and 1.631 (2) \AA, respectively, and the $C g 1 \cdots \mathrm{Co} 1 \cdots C g 2$ angle is 177.2 (7) ${ }^{\circ}$, where $C g 1$ and $C g 2$ are the centroids of the substituted and unsubstituted rings, respectively. The cyclopentadienyl $\mathrm{C}-\mathrm{C}$ bond distances range from 1.395 (8) to 1.443 (5) \AA (ring C1-C5) and from 1.364 (9) to 1.402 (7) \AA (ring C6-C10). The P1-C4 bond distance is significantly shorter than the $\mathrm{P} 1-\mathrm{C} 11$ and $\mathrm{P} 1-\mathrm{C} 15$ distances (Table 1).

The $\mathrm{PF}_{6}{ }^{-}$anion links to the cobaltocenium cation via the weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonding (Fig. 2 and Table 2).

Experimental

The title compound was prepared according to standard literature procedures (Claudia \& Albrecht, 2000). Slow diffusion of diethyl ether into an acetone solution of the compound gave single crystals of (I).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{P}\right)\right] \mathrm{PF}_{6}$
$M_{r}=478.27$
Monoclinic, $P 2_{1} / n$
$a=12.2603$ (11) \AA
$b=15.2255$ (12) \AA
$c=12.3230$ (11) \AA
$\beta=108.4620(11)^{\circ}$
$V=2181.9$ (3) \AA^{3}
$Z=4$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996$)$
$\quad T_{\min }=0.685, T_{\max }=0.822$
12636 measured reflections

12636 measured reflections
$D_{x}=1.456 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3154 reflections
$\theta=2.2-22.1^{\circ}$
$\mu=0.98 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, red
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

4754 independent reflections
3415 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-9 \rightarrow 15$
$k=-16 \rightarrow 19$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1021 P)^{2}\right. \\
& +0.9195 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.73 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

P1-C4	$1.840(4)$	$\mathrm{P} 1-\mathrm{C} 15$	1.879 (5)
P1-C11	$1.900(5)$		
$\mathrm{C} 4-\mathrm{P} 1-\mathrm{C} 11$	$98.9(2)$	$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 15$	$111.6(2)$
$\mathrm{C} 4-\mathrm{P} 1-\mathrm{C} 15$	$104.50(19)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6 $\cdot \mathrm{F}^{\mathrm{i}}$	0.98	2.49	$3.340(7)$	145
C8-H8 $\cdot \mathrm{F}^{\text {ii }}$	0.98	2.45	$3.349(6)$	152
C9-H9 •F4	0.98	2.35	$3.304(8)$	164

Symmetry codes: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+1,-y+1,-z+1$.

Methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$, and torsion angles refined to fit the electron density, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.98 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 0242010 and 20472023), the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, and the Hubei Province Science Fund for Distinguished Young Scholars (No. 2003ABB006).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Christoper, J. M. \& Thomas, W. (2000). Chem. Commun. pp. 1249-1250.
Claudia, C. B. \& Albrecht, S. (2000). Organometallics, 19, 3818-3823.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

